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1. INTRODUCTION

The purpose of this report is to communicate the partial results

obtained to date in our investigation of the title problem. These studies

are continuing, and a complete documentation, including a discussion of

the relevant literature, will be provided in the future. The present

communication will satisfy the requirements of the original grant, how-

ever, and will allow it to be terminated.

Since a more complete documentation of the facility, procedures,

and results will be forthcoming and since certain alterations and improve-

ments will be affected in these matters, the current results will be pre-

sented with minimum discussion. However, it should be noted that the

findings to date are considered to add significant information to the

extant knowledge concerning initial condition effects on the development

of plane shear layers.

1.1. Experimental Facility

A central characteristic of the study was to examine the asymptotic

states of the shear layer created from the laminar and turbulent boundary

layer states on essentially the same flow system; that is, if the two

boundary layer states are achieved with only minor alterations, then

any influence of the overall geometric features of the flow field and/or

the probe and traverse system will be eliminated. This proved rather

more difficult than was anticipated, and numerous geometries were

examined. The flow system finally selected is shown in Figure 1. The

flow in the indicated contraction is from a 100 x 152 cm plenum chamber

fed by a one percent feedback speed controlled fan and is 10 x 100 cm at

the exit to the atmosphere. A laminar boundary layer exists at the end

of the 25.4 cm plate when a portion of the streaming flow is bled into the

small plenum chamber over the gap. Conversely, when the bleed flow is

eliminated, a turbulent boundary layer is established at the end of the

plate. The shear layer is the upper edge of the 10 x 100 cm wall jet;

the flow is bounded on the other three sides.

A computer -controlled stepping motor was used to traverse

the single (Disa gold) hot-wire probe utilized for the boundary layer and

shear layer velocity traverses. A T.I. 960A minicomputer was used to

process the hot-wire signals. The input voltage was digitized, and its

1



statistical character was interpreted using a 0. 5 fps increment calibra-

tion table. That is, the linearized hot-wire voltage E was processed to

store 30-second averages of E and E2. The combination of these values

allowed u and 62 to be obtained. (Note: For < V > = i'i + jv.+ kr, the
2

approximation was made that the single-wire data results in _ and uZ

This approximation is subject to the usual restrictions of V << i and

vr /u , Tv/u << 1.)

1.2. Experimental Results

The laminar and the turbulent boundary. layer velocity profiles

are shown in Figure 2. The difference in their physical extent is clearly

shown in Figure 2a, and the agreement of the laminar profile with the

Blasius solution is shown in Figure 2b. During the acquisition of the

data, the scope traces suggested that a heaving motion existed in the

laminar layer. That is, the fluctuation level at a point was nonzero,

but it was apparently caused by nonvortical or wave-like fluctuations.

The turbulent fluctuations were as expected. The velocity fluctuation

intensities presented in Figure 3 confirmed this. A simple analysis

(wherein the laminar boundary layer profile was assumed to maintain

its shape, but with a time varying thickness, 6(t), such that the displace-

ment of any segment of the layer was linearly proportional to its height)

was used to compute the fluctuation intensities. The parameter K was

arbitrarily selected to provide rough agreement at the midpoint of the

velocity profile. The agreement between the resulting analytical form

S1/2

Au = KF" [ ,] (1)
m

and the observed i values suggests that the physical processes are

similar to those described by this model.

However, it was also observed that the upper plenum served as

a Helmholtz resonator, and concentrated fluctuations at 70 hz and 80 hz

were observed in the boundary layer spectra for the turbulent and laminar

boundary layers respectively. The resonator frequencies are not con-

sidered to be dynamically significant. Specifically, the spectra at

x = 2. 54 cm show that the fluctuations in the naturally developing shear

layers either swamp the single frequency fluctuation (turbulent case) or

are far removed from it (=800 hz) for the laminar boundary layer. It
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is pertinent to note that the Strouhal number for the laminar case is far

below that which is observed in natural transitions in shear layer studies.

(This point will be examined more completely in the final report.)

The normalized shear layer mean velocity data for x = 46, 56,

and 66 cm are presented in Figure 4, and the numerical data are presented

in Tables 1 and 2 for quantitative reference. The similarity parameter

was established by plotting u/um versus y -y () , where the latter is the

relative distance from the "centerline" of the velocity field. The y()

distributions were essentially the same for the two conditions and are

documented in the tables. The apparent origins, x o , of the shear layer

were then established by linear extrapolations of the u/um data from the

three x locations such that u/um = constant for [y -y(- )]/[x-x ]. For

the laminar and turbulent boundary layer cases, xo was -1.5 and 2. 5 cm,

respectively.

The choice of probability coordinates for the normalized data

was in response to the interest in the spread rate parameter o. The

following analysis relates a of the error function description (aflow) to

the standard deviation (prob ) of a Gaussian process distribution.

The cumulative distribution function for a Gaussian process is

F(a) '= [2 21 exp -( ) ] d (2)
27.dr 2 (p

P P

and the error function form of the mean velocity distribution is

) { 1 + erf f y* } . (3)
m

The error function is defined as

erf (x) = t dt . (4)

In order to force (2) to be of the form shown in (3), the distribution F is

rewritten as

F(a ) = 0.5 + ~1- 2 " exp (- ) d (5)
p o p

where M = 0 is considered since y = 0. Note that the integral in (5) is of

the form of an error function. Let /(&2p ) = t and d = N2a( dt. Using

the definition of erf (x) given by (4), rewrite F(a ) as
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F(a) = { 1+ erf a } . (6)

Comparing (3) and (6) and noting that a is the value of r/(T a- p) at the

point of interest, we obtain

p

or

f = . (7)
P

The "best fit" curves for the experimental data are presented in

Figure 5. The aflow values are essentially the same for the laminar and

for the turbulent boundary layer cases, but are markedly different from

the 'flow = 12 value commonly accepted for shear layers generated from

a laminar boundary layer. The difference between these results and

those of earlier studies may be in the disturbance level of the present

laminar layer; this effect is under investigation. Also, it is significant

that the error function satisfactorily describes the shear layer only for

u/um < 0.7. This feature, as well as the evaluation of cflow' are con-

sidered to be best revealed by the use of probability coordinates.

In addition to a further examination of the laminar boundary layer

disturbances at x = 0, the developing shear layer profiles and conditionally

sampled data to search for the coherent structures observed by other

investigators are considered to be important extensions of the present

studies.

1.3. Summary

A flow facility to create a plane shear layer from a laminar and

a turbulent boundary layer has been established. The spread rate para-

meter, aflow' for these two conditions has been accurately determined.

It is Oflow = 9.3 for the laminar boundary layer case, and Yflow = 9.5

for the turbulent boundary layer case. A four percent (maximum), non-

turbulent disturbance level exists in the laminar boundary layer. Further

experiments are underway to determine the significance of this distur-

bance level on the asymptotic shear layer.

The commonly used error function, in which Tflow appears, pro-

vides a good representation of u/u for 0 Su/u m  0. 7. Systematic

deviations from the error function are observed for fU/u 0. 7.
max
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Figure 1. Schematic representation of the experimental facility.
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Figure 3b. Spectral content of the laminar boundary
layer fluctuations (arbitrary ordinate).
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Figure 3c. Spectral content of the turbulent boundary
layer fluctuations (arbitrary ordinate).
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Figure 3e. x=l, y=-O.02 (in.) Turbulent B.L. Case.
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Figure 4. Normalized shear layer mean velocity profiles.
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Figure 4b. u/un vs. y* on probability coordinates, Turbulent Boundary Layer Case
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